Planning of SWER MV Networks

Bruce McLaren. IARC Eskom South Africa

Key planning issues (SWER)

Part 1 - Particular SWER parameters constraints)

- Loading, balance and interference constraints.
- Components and specific design parameters
- Ferranti resonance on SWER schemes
- Conductor selection

Part 2 – Emerging electrification plan approach

- Electrification plan (emerging)
- Detailed design reference based on the electrification plan - planning report.
- Project load estimates and upgrade considerations
- Unbalance considerations.

SWER Constraints

- Peak Demand: 475 kVA (25A, 19.1kV)
- 3% Unbalance on 3 Phase Network
- Voltage range at customer supply points -230 V +- 10%, viz. 207-253V.
- Telephone Interference

Peak Current Meter

Eskom SWER Design Parameters

Rated voltage 19.1 kV (33 kV phase-to-phase)

Maximum feeder current 25 A

Isolation transformers 50 kVA 100 kVA 200 kVA 400 kVA

Note: A 16kVA isolation transformer is not considered because of protection constraints and the small practical cost difference between a 16 kVA and 50 kVA isolation transformer.

Customer transformers

16 kVA single-phase 32 kVA dual-phase 64 kVA dual-Phase

Eskom SWER Design Parameters

Electrode voltage:	rod type 100 V				
(Refer earthing section)	trench type 32 V				
Maximum touch potential	<32 V				
Line basic insulation level	>250 kV				
Equipment insulation level	>200 kV				
LV neutral MCOV (isolation transformer SWER)					

5 kV

Gapless surge arrestor Ratings

V system	U max	MCOV	V res.	Earthing
11	12	10	40	Non effective
22	24	19.5	80	Non effective
33	36	24	100	Effective (SWER)
33	36	29	120	Non effective

Voltage imbalance

Voltage Unbalance: Voltage Unbalance occurs when the voltage magnitude of the 3 phases is different. It is defined as the ratio of the negative phase sequence voltage to positive phase sequence voltage, expressed as a percentage. It is calculated as follows (reference standard ASAAJ3-1).

Unbalance $\sqrt{\frac{1-\sqrt{3-6\beta}}{1+\sqrt{3-6\beta}}}$ where $\beta = \frac{U_{AB}^4 + U_{BC}^4 + U_{CA}^4}{(U_{AB}^2 + U_{BC}^2 + U_{CA}^2)^2}$ and U is the RMS line to line voltage

Single Phase Unbalance

22 kV 3 PHASE SYSTEM

THE EFFECT OF TWO PHASE LINE TAP-OFF FROM A 22 kV ESKOM LINE

Single Phase Unbalance

THE EFFECT OF TWO PHASE LINE TAP-OFFS FROM A 22 kV ESKOM LINE

Ferranti Effect:						
Total Line Length	Charging Current	% Voltage rise				
10 km	0.13 A	0.01%				
50 km	0.65 A	0.15%				
100 km	1.31 A	0.61%				
200 km	2.67 A	2.40%				
400 km	5.68 A	8.77%				
600 km	8.95 A	14.34%				

Isolation Transformer

500 kVA ISOLATION TRANSFORMER FOR SWER SYSTEMS

SWER Customer Transformer

16 and 32 kVA TRANSFORMER, DUAL PHASE LV

FOR 19.1 kV SWER SYSTEM

Conductor options - Refer structures

- On the basis of limited (planned) loads, line lengths and upgrade paths normally light conductor rage is applied –
- AAAC Acacia.(7*2.08)
 - All aluminium alloy
 - Relatively low uts and strength dependant on all strands
 - Susceptible to vibration damage
 - Coastal and polluted areas
- ACSR Squirrel (6/1*2.11)
 - Aluminium conductor steel reinforced
 - Cost effective flat terrain
- ACSR (extra strong) Magpie.(3/4*2.12)
 - Three aluminium, 4 steel strands
 - High uts value, relatively robust.
 - Ideal for long spans and undulating terrain.

Conductor options - Refer structures

Conductor	Point Load(minimum case)		Distributed load (typical case)		
	5%voltage-	10% voltage-drop	5% voltage-drop	10% voltage-drop	
	drop				
Fox	41 km	82 km	82 km	164 km	
Squirrel	27 km	53 km	53 km	107 km	
Magpie	14 km	28 km	28 km	56 km	
Bantam	8 km	15 km	15 km	31 km	

Assumption: Line lengths based on 25A load at 19,1kV.

Determine the prospective life cycle loading on the affected system

- Customer load estimating;
 - Design tools Eskom has DT PET (applicable to SA situation) to enable parameter and pu electrification load determination See design tools section.
 - Deterministic methods, calculation tables with diversity factors.
 - Forecast load growth on a time line, particularly emerging networks and mass electrification.

Load estimation & project parameters

Criteria	Issue		Specified Minimum Requirement	Value offered	Reason and/or comments - CPE to provide short summary and design r		rovide short summary and design report
MV System							
	Sys. Config:	SWER	TBC	Yes	One spur of 17km		on nor Diamaing Deposit. Utilized Against
		3 Phase	TBC	Yes	Two spurs proposed by	planning report	- 22km - constructed in 3 Phase (1740, 1
	Voltage intake at		Design/No load				
		As per Planning report: 33 Vilages	99%-102%	99%-102%	Where low load voltage	es exceed 100%	, Maximum of 2,5% / 3% boost on 242V :
	Protection:	Recloser Reqd. Transformer switch Pole BIL wires reqd.	Yes Yes Yes	Yes Yes Yes	Required on the Mbashe Mqanduli 22kV network - Existing Take off at LNAK002 A link or MV Cut out unit per transformer supplied as per instruction. Confirmed c All intermediate structures except stayed and shared structures and structures in		
	Voltage support	Regulator at: Capacitor at:	No No	No No	Not required. Not required.		
Indicators							
	Scope	No of connections	2698	2698			
	Density	m²/Connection	ТВР	8897	Calculated from the ov	erall layout	
	ADMD (kVA)	Initial Final			Alternative: Alpha	Initial 0.25	<i>Final</i> <i>0.32</i> Comply
	CB setting	Initial Final			Beta CB	1.86 20	1.41 Comply 20 Comply
	DCF				ADMD	0.55	0.86 Comply
	UCF		As reqd.		Max trfr loading 130% - Setting in ReticMaster at AMEU curre Fault level at end of line within specification of 1.6x80A		tting in ReticMaster at AMEU currents.
	Maximum LV radial (Limitation applies to 90 % of project)	feeder length.	550 m	750			ation of 1.6x80A
	Protection	MV fuse sizes LV min fuse size	63 Amp	20 Amp 80 & 63 Amp	Group fusing - Fuse ins EBM or HA Type as pe	serts - 20A K-typ r Eskom standar	e as per Eskom specification as per SLD d specification. Mostly 80A fuses will be ι
	Metering	LV/Bulk/Comb	Yes	No	Not required as per pla	nning report.	

Electrification distribution plan-Discussion example

Planning report - Idutywa phase 5 Electrification.doc

Proposed configuration in terms of the electrification distribution plan including MV upgrade consideration

(MV)

SWER Upgrade options

- Extend system Convert to 3 phase and move isolation transformer position.
- Split system at isolation transformer point (ideal as existing electrodes are used.)
- New in feed positions provided.

Typical LV design, parameters and upgrade options

Conclusion

For Rural electrification expansion

- Be mindful of the specific SWER constraints & SWER parameters
- Identify viable SWER schemes in the context of the emerging electrification plan
- Include phased implementation in the project motivation/specification

Thank you

